Optical extraction of oil spills based on sunglint reflection difference in HY-1C CZI images

نویسندگان

چکیده

æº¢æ²¹æ˜¯æµ·æ´‹çŽ¯å¢ƒç›‘æµ‹çš„é‡è¦ç›®æ ‡ä¹‹ä¸€ã€‚è¿‘å¹´æ¥ï¼Œå ‰å­¦é¥æ„Ÿå¯¹æµ·é¢æº¢æ²¹ä¸åŒæ±¡æŸ“ç±»åž‹çš„è¯†åˆ«ã€åˆ†ç±»ä¸Žä¼°ç®—åŽŸç†å¾—åˆ°é˜æ˜Žï¼Œå ¶æŠ€æœ¯ä¼˜åŠ¿èŽ·å¾—è®¤å¯ï¼›èƒ½ä¸ºæµ·é¢æº¢æ²¹ç›‘æµ‹æä¾›é¢ è¦†æ€§çš„æŠ€æœ¯æ”¯æŒï¼Œæé«˜äº†æº¢æ²¹çš„è¯†åˆ«ç²¾åº¦ï¼Œå®žçŽ°ç²¾ç»†åŒ–å®šé‡æŽ¢æµ‹ã€‚éšç€ä¸­å›½æµ·æ´‹æ°´è‰²ä¸šåŠ¡å«æ˜Ÿâ€”HY-1C/D(Haiyang-1C/Dï¼‰çš„æŠ•å ¥åº”ç”¨ï¼Œå ¶æ­è½½çš„æµ·å²¸å¸¦æˆåƒä»ªCZI(Coastal Zone Imager)在中国近海溢油监测中体现了较好的效能;但HY-1C/D星CZI载荷开展中国近海溢油业务化监测应用,还需要不断丰富并发展溢油识别提取算法。在HY-1C/D星CZIè½½è·çš„é«˜ç©ºé—´åˆ†è¾¨çŽ‡å½±åƒä¸­ï¼Œä¸åŒçš„æµ·é¢æº¢æ²¹æ±¡æŸ“ç±»åž‹å ·æœ‰æ˜Žç¡®çš„å ‰è°±å“åº”ç‰¹å¾å’Œå½¢æ€ç‰¹å¾ï¼›å¤ªé˜³è€€å ‰åå°„å·®å¼‚ï¼Œæœ‰åŠ©äºŽæµ·é¢æº¢æ²¹çš„é¥æ„Ÿæ£€æµ‹ï¼ŒåŒæ—¶ä¹Ÿç»™æº¢æ²¹æ±¡æŸ“çš„è¯†åˆ«åˆ†ç±»ä¸Žå®šé‡ä¼°ç®—å¸¦æ¥ä¸ç¡®å®šæ€§å½±å“ã€‚æœ¬ç ”ç©¶åœ¨CZIè½½è·æ•°æ®å¯¹æµ·é¢æº¢æ²¹æ³¢æ®µå“åº”åŸºç¡€ä¸Šï¼Œé€šè¿‡æº¢æ²¹æµ·é¢ä¸ŽèƒŒæ™¯å¹²æ‰°çš„è€€å ‰åå°„ç‰¹å¾åˆ†æžï¼ŒåŽ˜æ¸ CZIå›¾åƒä¸­æµ·é¢è€€å ‰å¹²æ‰°çš„ç©ºé—´åˆ†å¸ƒç‰¹ç‚¹ï¼›è¿›ä¸€æ­¥åœ¨ä¼˜é€‰æ³¢æ®µçš„ç§»åŠ¨çª—å£åˆ†å‰²åŠå ¶å‚æ•°ç»Ÿè®¡åŸºç¡€ä¸Šï¼Œé€šè¿‡å¯¹ä¸åŒåˆ†å‰²çª—é—´çš„è€€å ‰å½¢æ€ç‰¹å¾åŠå ¶ç›¸å ³æ€§åˆ¤æ–­ï¼Œå®žçŽ°äº†CZIå›¾åƒä¸Šæµ·é¢æº¢æ²¹è¾ƒé«˜ç²¾åº¦çš„è¯†åˆ«ä¸Žæå–ã€‚å ¶ä¸­ï¼Œå¼±è€€å ‰æ¡ä»¶ä¸‹æ²¹è†œæå–çš„å¹³å‡ç²¾åº¦ä¸º90.24%、乳化油的平均精度为80.55%ï¼›å¼ºè€€å ‰æ¡ä»¶ä¸‹æº¢æ²¹æå–æ€»ä½“æ•ˆæžœä¹Ÿè¾ƒå¥½ã€‚é¢å‘å›½äº§è‡ªä¸»æµ·æ´‹æ°´è‰²ä¸šåŠ¡å«æ˜Ÿæ•°æ®ï¼Œå‘å±•æº¢æ²¹å ‰å­¦é¥æ„Ÿè¯†åˆ«ã€åˆ†ç±»ã€æå–ä¸Žä¼°ç®—ï¼Œä¸ä» èƒ½ä¿ƒè¿›å›½äº§æµ·æ´‹å ‰å­¦å«æ˜Ÿçš„ä¸šåŠ¡åŒ–åº”ç”¨ï¼Œæ›´èƒ½ä¸ºå ¨é¢æŽŒæ¡ä¸­å›½è¿‘æµ·æº¢æ²¹æ±¡æŸ“çŠ¶å†µæä¾›æ•°æ®å‚è€ƒã€‚

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic identification of oil spills on satellite images

A fully automated system for the identification of possible oil spills present on Synthetic Aperture Radar (SAR) satellite images based on artificial intelligence fuzzy logic has been developed. Oil spills are recognized by experts as dark patterns of characteristic shape, in particular context. The system analyzes the satellite images and assigns the probability of a dark image shape to be an ...

متن کامل

Feature Extraction And Classification Of Oil Spills In Sar Imagery

Synthetic Aperture RADAR (SAR) imaging system is used to monitor the marine system. Oil spill pollution plays a significant role in damaging marine ecosystem. One main advantages of SAR is that it can generate imagery under all weather conditions. In a SAR image dark spots can be generated by number of phenomena. The dark spots may be of algae, low wind areas, coastal areas and oil spills. The ...

متن کامل

Automatic detection of oil spills in ERS SAR images

We present algorithms for the automatic detection of oil spills in SAR images. The developed framework consists of first detecting dark spots in the image, then computing a set of features for each dark spot, before the spot is classified as either an oil slick or a “lookalike” (other oceanographic phenomena which resemble oil slicks). The classification rule is constructed by combining statist...

متن کامل

Oil Spills Detection In SAR Images Using Nonlinear Fuzzy Filter

Oils spills broach high degree of pollution into the “blue” bodies which are considered fatal for the water ecosystem. So these oil spills need to be spotted at right time to prevent this disaster pursue. Many techniques are very actively inculcated for the same. Synchronous Aperture Radars (SAR) which is a space borne technique is primarily used for this purpose. Techniques which were used a w...

متن کامل

Fast Detection of Oil Spills and Ships Using SAR Images

Alberto Lupidi 1,*, Daniele Staglianò 1,2, Marco Martorella 1,2 and Fabrizio Berizzi 1,2 1 Consorzio Nazionale Interuniversitario delle Telecomunicazioni (CNIT)-National Laboratory of Radar and Surveillance Systems (RaSS), 56124 Pisa, Italy; [email protected] (D.S.); [email protected] (M.M.); [email protected] (F.B.) 2 Department of Information Engineering, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of remote sensing

سال: 2023

ISSN: ['1007-4619', '2095-9494']

DOI: https://doi.org/10.11834/jrs.20221688